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The excitation of a harpsichord string when it is set into motion, i.e., plucked, by
a plectrum is studied. We "nd that the amplitude of the resulting string vibration is
approximately independent of the velocity with which the key is depressed. This
result is in accord with conventional wisdom, but at odds with a recent theoretical
model. A more realistic theoretical treatment of the plucking process is then
described, and shown to be consistent with our measurements. The experiments
reveal several other interesting aspects of the plectrum}string interaction.
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1. INTRODUCTION AND BACKGROUND

The harpsichord is a stringed instrument from which the piano evolved nearly 300
years ago. The two instruments di!er in a number of ways, the most important
being the manner in which the strings are excited. In a piano, the strings are set into
motion by a blow from a felt covered hammer, while in a harpsichord the excitation
is accomplished by plucking the string with a thin #exible &&beam'', called a plec-
trum. Originally, the plectrum was typically a piece of crow quill, while in modern
instruments it is often a thin strip of plastic (delrin is a popular choice). While the
piano has been the subject of a number of scienti"c studies [1}4], the harpsichord
has attracted much less attention. A very nice, wide ranging, discussion of the
physics of the harpsichord was given some years ago by Fletcher [5, 6], who gave
a very insightful analysis of many aspects of the instrument. (More recent studies
have given detailed discussions of several speci"c aspects of the harpsichord 7}9.)
However, one topic which was not considered in any detail was the interaction of
the plectrum and the string. This is the problem that is addressed in the present
paper.

An important feature of the harpsichord is that the performer has relatively little
control over the volume of a note. That is, the volume of a note is observed to be the
&&same'' regardless of how fast a key is pressed. This is often viewed as a de"ciency.
Indeed, the desire to have an instrument in which the volume of a note can be made
either soft or loud in accordance with the key velocity was a prime motivation for
the invention of the piano.

The volume of a note produced by a harpsichord depends on the amplitude with
which the string is plucked, i.e., the de#ection of the string when it slips o! the
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Figure 1. Qualitative picture of the excitation of a string by a #exible plectrum. The jack begins as
shown at the left, with the plectrum unbent. As the jack moves upwards, the plectrum #exes, exerting
a force on the string. Eventually, as shown at the right, the plectrum slips o! the string, and thereafter
the string vibrates freely.
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plectrum. The interaction of the plectrum with the string is shown schematically in
Figure 1. The plectrum is mounted in a holder called the tongue, which is mounted
in the jack, which in turn sits on the end of the key lever. The tongue is able to
rotate on an axle (attached to the jack) which runs parallel to the string. This
enables the plectrum to move past (rotate out of the way of) the string, and hence be
&&reset'', after a key is released. However, the tongue does not rotate when the
plectrum is moving upwards, as in Figure 1. For our purposes, we can assume that
the tongue and jack are rigidly connected, so that when a key is pressed the jack
moves upwards, and the plectrum de#ects as shown in Figure 1. This de#ection
increases as the jack moves, and eventually the plectrum slips past the string. The
string then vibrates freely, producing its note. According to the conventional
wisdom, the de#ection of the plectrum and string when the two separate, and hence
the amplitude of the pluck, are all approximately independent of the speed of the
jack (i.e., the speed with which the key is pressed). This accounts for the observation
that the volume of a note does not vary signi"cantly with key velocity. However,
a recent theoretical calculation has questioned this picture. Gri!el [10] considered
the physics of plucking using a model which treated the plectrum as a torsional
spring, and included the inertia of the string. His calculation predicts that the string



Figure 2. Prediction for the amplitude of the string motion as a function of the jack velocity,
according to the model of Gri!el [10].
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vibration amplitude, A
s
, can vary quite signi"cantly with the jack velocity, v

j
. While

the detailed behavior depends on parameters such as the length of the plectrum and
the frequency of the note, the qualitative prediction from Gri!el's model is shown in
Figure 2. As v

j
is increased from small values, the model predicts oscillations of A

s
,

with a substantial peak followed by a rapid decrease, and with A
s
P0 for large jack

velocities. The value of A
s
at v

j
(max) is 50% larger than that found in the limit of

small v
j
. Gri!el suggested that v

j
in a real harpsichord is large enough to be outside

the regime where A
s
oscillates. However, if this is really the case, then the volume of

a note should decrease substantially as the key velocity is increased, and we do not
believe that this is observed in normal playing.

The results of Gri!el have motivated us to carry out an experimental study of the
plectrum}string interaction. Surprisingly, we know of no previous experiments of
this kind. Our main goal was to measure the relation between A

s
and v

j
, and

thereby test the prediction sketched in Figure 2. During the course of the measure-
ments, we observed a number of associated phenomena, which we believe are also
worthy of description. After presenting the experimental results, we consider a more
realistic theoretical model of plucking, and compare it with our measurements.

2. EXPERIMENTAL SET-UP AND RESULTS

The apparatus is shown schematically in Figure 3. A string is looped over
a hitchpin, runs between a bridge and an agra!e, and is then fastened to a tuning
pin. The bridge sits on a thin piece of spruce, which acts as a soundboard. The string
is plucked by a delrin plectrum, of thickness 0)5 mm, which is mounted in a plastic
harpsichord jack obtained from Hubbard Harpsichords, Sudbury, MA. The jack is
set into vertical motion by depressing, by hand, a key lever from a piano action.
(We considered constructing a mechanical device to press the key, but the repeata-
bility obtained by hand seemed satisfactory.) Piezoelectric accelerometers (both



Figure 3. Schematic diagram of the apparatus, showing the location of the accelerometers, and the
electronics associated with the string sensor.
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from PCB Piezotronics) were attached to the jack, and to the key lever immediately
adjacent to the jack. The accelerometer on the jack was a model 350A02, while the
one on the key was a model 352B68.

A capacitive sensor [13, 14] was used to measure the motion of the string. This
sensor was a small metal plate, &1]1 cm2, which was positioned a few mm above
the string. A DC potential (&20 V) was applied to the string, and the voltage across
the sensor was fed to a preampli"er. The capacitance of the sensor (plus cables) was
small, so the RC time constant for charging the sensor was very short (the resistor
R was 10 k)). The sensor voltage was thus proportional to the charging current,
which is proportional to the time derivative of the sensor capacitance. Since the
sensor capacitance varies inversely with the spacing between the sensor plate and
the string, the sensor output was proportional to the velocity of the string. In
a separate arrangement (not shown in the "gure), the plectrum force was measured
by brushing the plectrum against the edge of a thin metal strip attached to
a piezoelectric force sensor (model 208B03, obtained from PCB Piezotronics.) The
thickness of this strip was 0)5 mm, which is the same as that of a typical harpsichord
string. Any pair of signals (the two accelerometers, the string velocity, and the force
sensor) could be recorded simultaneously using a personal computer, with a samp-
ling rate of typically 22 kHz, and the results then processed and analyzed in detail.

Figure 4 shows the acceleration of the jack (top), and the velocity of the string
(bottom), as functions of time for a pluck of moderate amplitude. A steel string with
a diameter of 0)2 mm and length of 53 cm was used in this measurement. The
plectrum contacted the string approximately 10% of the string length from the
agra!e. The string velocity signal is simplest to understand. At early times, this
signal was indistinguishable from the noise of the sensor plus preampli"er (note
that while the origin of the time axis is arbitrary, it is the same in the two plots). At
t+0)24 s, the string was set into motion, and it thereafter oscillated rapidly. We



Figure 4. Results for the acceleration of the jack (top), and the string velocity (bottom), as a function
of time, for a typical keypress. The origin of the time axis is arbitrary. The string was composed of
steel, was 0)2 mm in diameter, and had a length of 53 cm. Here, and in Figures 5}7, the origin of the
time axis is arbitrary; t"0 simply corresponds to when the data recording was begun, and not to
anything associated with the plectrum or string. However, the time scales for the jack acceleration and
the string velocity are the same, so that one can use these data to determine the order of events for
features in the two signals.
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identify t+0)24 s as the time at which the plectrum left contact with the string. The
key acceleration shows a more complicated behavior. The key, and hence also the
jack and the plectrum, begin to accelerate signi"cantly at about t"0)1 s. The
acceleration peaks at t&0)16 s, at about the same time the signal appears to
become noisy. Figure 5 shows the acceleration signal on an expanded scale, and it is
seen that this noise grows in strength up to t&0)24 s, at which time the acceleration
changes very rapidly, and the string begins its free oscillation. As noted above, this
was the time at which the plectrum lost contact with the string. It appears that the
high-frequency &&noise'' in the jack acceleration signal begins when the plectrum
makes its initial contact with the string. We believe that this &&noise'' is due to
rubbing of the plectrum against the string, as it attempts to slide past. When we
listen to this signal when played through a speaker, it does indeed sound like two
objects rubbing together. Since the plectrum is in contact with the string during the
time of these rubbing oscillations, one would expect them to be also present in the
string signal. Evidently, the oscillations are too small to be evident above the noise
in the string signal in Figures 4 and 5.

From the measured jack acceleration, one can integrate to obtain the velocity of
the jack, and the results are shown in Figure 6. The jack velocity when the plectrum



Figure 5. Expanded view of the results in Figure 4.

Figure 6. Velocity of the jack derived by integration of the acceleration data in Figure 4.

460 N. GIORDANO AND J. P. WINANS II
lost contact with the string was in this case approximately 0)11 m/s. Based on the
experience of one of the authors (as an amateur harpsichord player), this keypress
was typical for normal playing. It is also typical of values reported in the piano
literature.



Figure 7. Expanded view of the string velocity data from Figure 4, just after the plectrum has lost
contact with the string.
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Figure 7 shows the string velocity just after the release of the plectrum. The
repeating pattern of pulses after t"0)243 s is due to the &&pluck'' moving back and
forth along the string. The repeat period of these pulses is approximately 3 ms,
corresponding to the fundamental frequency of the string. Careful examination also
reveals that an oscillation (indicated by arrow labeled A in Figure 7) at a much
higher frequency is present just after the plectrum releases from the string. The
frequency of this oscillation is approximately 2 kHz. We note that the frequency of
this oscillation did not vary when the location of the plectrum was changed (we
compared the behavior here with that found with the jack at locations 5 and 15% of
the string length from the agra!e). This suggests that the high frequency oscillation
is not due to a resonant mode of the string, but that it is connected with a mode of
the plectrum. With this in mind, we measured the &&free'' vibrations of the
jack/plectrum in the following way. With the jack resting on the key lever and the
plectrum far from the string, the plectrum was &&plucked'' by hand (actually, with
a Q-tip). The resulting signal from the accelerometer mounted on the jack is shown
in Figure 8. The top of this "gure shows the jack vibration in the time domain, while
the bottom shows the power spectrum of this signal. The frequency composition is
complex, but the strongest components are at approximately 1.8, 2.5, and 7 kHz.
The lowest frequency component is close to that of the high-frequency oscillation of
the string, as just observed in Figure 7. This supports our suspicion that this
oscillation is due to vibrations of the plectrum.



Figure 8. Acceleration of the jack body when the plectrum is set into free vibration. (a) Jack
acceleration (along the vertical direction) as a function of time, (b) power spectrum of the acceleration
signal.
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Figure 9 shows the force exerted by the plectrum as it brushes by a metal blade
attached to a force sensor (as described above). The set-up was arranged to mimic
the interaction of the plectrum with a string, with a similar overlap between the
plectrum and the blade. The maximum force was found to be of order 1 N, which is
also a typical key force [15].

The results presented above show that the excitation of a harpsichord string by
a plectrum is a complex process, and that the vibrational degrees of freedom of the



Figure 9. Plectrum force as a function of time, as the plectrum brushes past the edge of a metal
blade.

PLUCKED STRINGS AND THE HARPSICHORD 463
plectrum are quite evident in the motion of the jack and string. Nevertheless, we
would for the moment like to ignore such complications, and explore general trends
as a function of the jack velocity. In particular, we would like to consider how the
amplitude of the string vibration depends on the speed of the jack, v

j
, and compare

with the model calculations of Gri!el as sketched in Figure 2. v
j
can be derived by

integration of the key acceleration, as shown above in Figure 6. The string
amplitude can be measured in several ways. One is to simply measure the pulse
height of the string velocity signal as in Figure 7. Another way would be to measure
the r.m.s. of the string signal over a "xed interval after the plectrum leaves the
string. We have used both of these approaches, and "nd that they give very similar
results. In the "gures below we have measured the string amplitude from the height
of the "rst large pulse in the string signal; an example is the pulse labeled &&B'' in
Figure 7.

Figure 10 shows results for the amplitude of the string velocity, v
s
, as a function of

the jack velocity. This result was obtained for a relatively thick brass string, 0)5 mm
diameter, as would typically be found in the bass region. Over this range of v

j
,

which corresponds to the range of normal playing, the peak value of v
s

varies
weakly with the jack velocity. There appears to be an increase of approximately
10% in v

s
, but this increase is comparable to the experimental uncertainties (caused,

we believe, by variations in the precise time variation of the string velocity, from
measurement to measurement), so our results are also consistent with v

s
being

a constant, independent of v
j
. According to the model of Gri!el, the peak in the

string amplitude in this case should occur near v
j
&0)9 m/s, at which point,



Figure 10. Amplitude of the string velocity, v
s
, as a function of jack velocity, v

j
, for a brass

harpsichord string with diameter 0)50 mm and length 59 cm; f"150 Hz. A typical error bar for v
s
is

shown. The dashed line is a guide to the eye.
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according to his model, the string amplitude should be about 50% larger than at
very small v

j
. Hence, the model of Gri!el greatly overestimates the dependence of v

s
on jack velocity in this case.

It is interesting to compare the results in Figure 10 to what would be found if the
string were excited by a blow from a hammer, i.e., for a piano. For the case of
a piano, with the same range of key velocities (the key velocity would correspond to
our jack velocity), it has been shown [16] that the string amplitude would vary by
about a factor of 10. The very weak variation of the string amplitude found for our
plucked string is thus quite di!erent from what is observed for a piano.

Results for the string amplitude for a thinner string are shown in Figure 11. This
string was composed of steel, was 0)2 mm in diameter, and is typical of a treble
string. Here we "nd that v

s
is, to within the experimental uncertainties, independent

of v
j
. For this case the Gri!el model predicts that the main peak in the string

amplitude should occur at v
j
&2 m/s, which is at a much higher key velocity than

would be used in practice (and is much larger than we were able to attain here).
Figure 12 shows more results for the thick brass string, but with a much longer

length, and correspondingly lower fundamental frequency, than in Figure 10. Here,
there does appear to be some variation of v

s
with jack velocity, with an increase of

perhaps 30% over the range of v
j
studied. Gri!el's model predicts that for this case

the main peak in v
s
should occur at a jack velocity of 0)2 m/s, and that v

s
should

decrease by about a factor of 2 at the largest values of v
j
considered here. Hence, the

model of Gri!el again does not give a very good account of the measurements.



Figure 11. Amplitude of the string velocity, v
s
, as a function of jack velocity, v

j
, for a steel

harpsichord string with diameter 0)20 mm and length 53 cm; f"300 Hz. A typical error bar for v
s
is

shown. The dashed line is a guide to the eye.

Figure 12. Amplitude of the string velocity, v
s
, as a function of jack velocity, v

j
, for a brass

harpsichord string with diameter 0)50 mm and length 2)00 m; f"35 Hz. A typical error bar for v
s
is

shown. The dashed line is a guide to the eye.
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3. THEORETICAL MODEL AND RESULTS

While the Gri!el theory [10] is very interesting, our measurements suggest that it
has omitted some important physics of the problem. Let us therefore "rst review the
ingredients of Gri!el's model, and thereby consider what additional physics should
be included. He treated the problem as essentially two coupled springs, one
associated with the plectrum and one with the string. The plectrum was treated as
a rigid, massless rod, connected to the jack by a hinge. This hinge was assumed to
contain a torsion spring, with the force from this spring being proportional to the
angular de#ection of the plectrum with respect to the jack. As the jack moved, the
plectrum hinge rotated, and the plectrum exerted a force on the string, with the
force derived from the torsion spring. The string was modeled by a simple harmonic
oscillator, with a single e!ective mass and spring constant. The frequency of this
oscillator was equal to the fundamental frequency of the string. We should note
that Gri!el actually considered two models of the plectrum. In one case, just
described, the plectrum was assumed to be a rigid rod, while in the other it was
allowed to deform, via a spring-hinge, at its center. The two models gave similar
results, so we will only consider the "rst one here.

The solution of this model yields results like those shown qualitatively in Figure
2. For small jack velocities, v

j
, the resulting string amplitude, A

s
, exhibits small

oscillations around an approximately constant value. There is a substantial peak at
a velocity v

j
(max), with the peak value of A

s
being 1)5 times the average value at

small v
j
. At larger jack velocities the string amplitude falls rapidly. The physical

origin of these oscillations at small v
j
is easy to understand. The string is treated as

a harmonic oscillator, so if the excitation period (the time over which the plectrum
accelerates the string) matches the period of the string oscillator, or one of its
multiples, the energy transferred to this oscillator will be maximal. The largest peak
occurs when the excitation period matches the fundamental of the string oscillator.
For larger v

j
, the excitation time is shorter, and the mass representing the string

does not have time to move appreciably, so the string amplitude decreases.
While one would not expect Gri!el's model to be quantitatively accurate, it is

worthwhile to estimate the value of v
j
(max) for a realistic harpsichord string. For

typical parameters (essentially dependent on just the ratio of the plectrum length to
the distance of the plucking point from the end of the plectrum; see reference [10]),
the model yields v

j
(max)+0)2 du, where d is the initial distance from the jack to

the string, and u is the fundamental (angular) frequency of the string. For a note an
octave below middle C, with a plectrum length of d&5 mm, one "nds
v
.!9

&0)8 m/s. As we have seen in the previous section, this is a readily accessible
jack velocity. Hence, according to Gri!el's calculation, it should be possible to
signi"cantly a!ect the volume of such a note by an easily realizable change in the
key velocity. This prediction is at odds with both the &&conventional'' harpsichord
wisdom, and with our measurements.

While Gri!el's model seems reasonable at "rst glance, we believe that its
treatment of the string degrees of freedom is too simple. On the other hand, one
might argue (as does Gri!el) that treating the string as an oscillator with a single
resonant frequency amounts to ignoring all but the fundamental mode of vibration
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of the string. However, we do not like this argument for the following reason. The
fundamental frequency of the string corresponds to motion when it is not in contact
with the plectrum; i.e., when the vibrating length is the full length of the string.
When the string is in contact with the plectrum, it is e!ectively divided into two
pieces; each will have its own resonant frequency (determined by its length), and
these will be di!erent from the fundamental frequency after the plectrum loses
contact with the string. Hence, it is probably not a good approximation to model
the string with a single frequency which is the same before and after the plectrum
loses contact. We believe that it is worth examining this problem with the more
realistic model that we now describe.

We assume a #exible, lossless string, which can be described by the usual wave
equation

L2y
Lt2

"c2
L2y
Lx2

, (1)

where the undisturbed string runs along x, the jack moves along the transverse
direction y, and the parameter c is the wave speed. The force from the plectrum will
have a component along y, and also along the other transverse direction, z, so we
must deal with a similar wave equation for the z displacement of the string; this
equation will have the same form as equation (1).

The force from the plectrum acts only on a localized portion of the string, and is
zero elsewhere, as determined by the location of the plectrum and its width. In the
spirit of the "nite-di!erence numerical approach which will be taken below (and
which is explained in detail elsewhere [17]), it is convenient to think of the string as
composed of short segments of mass Dm. Adding the force of the plectrum explicitly
to equation (1) then leads to the equation of motion [17]

Dm
L2y
Lt2

"c2Dm
L2y
Lx2

#F
plectrum

(x), (2)

where Dm is the mass of a short segment of the string, and F
plectrum

(x) is the force
from the plectrum, which will be zero except for the value(s) of x at which the
plectrum contacts the string. A similar equation of motion is again obtained for the
z degrees of freedom of the string. While the notation in equation (2) is perhaps less
than elegant, it does make clear the connection to Newton's second law.

The plectrum is a #exible &&beam'', and in principle it could be modeled using the
full equation of motion for a thin plate [6, 18]. However, we will take a simpler
approach, which ignores the possibility of waves propagating along the plectrum.
The force required to bend a one-dimensional beam is given by [6]

F
plectrum

"F
0

L3y
p

Lz3
, (3)

where y
p
(z) describes the shape of the plectrum. The shape of a deformed beam is

a complicated problem; here we wish to approximate this shape by a simple
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function consistent with the use of equation (3). A convenient choice for such
a function is

y
p
"az3. (4)

The shape of the plectrum will also be needed for two other aspects of the
modelling. (1) It will give the direction of the force on the string from the plectrum;
here we will assume, following Gri!el, that this force is normal to the plectrum at
the contact point (and hence ignore the frictional rubbing observed in the
measurements). (2) The plectrum shape function will determine when the plectrum
slips past the string. While the use of equation (4) may seem somewhat arbitrary, we
believe that any reasonable choice (we have investigated several others) will lead to
similar results; we will comment on this further below.

Equations (2)} (4) de"ne our model. The actual calculation was carried out
numerically as follows. The equation of motion (2) for the string displacement y,
and the analogous equation for z, were written in "nite-di!erence form, as
described in detail elsewhere [17, 19]. The jack was assumed to move with
a constant velocity, v

j
, so its equation of motion was simply

y
jack

"v
j
t. (5)

(Note that we also investigated the behavior with an accelerated jack, and found
that only the velocity of the jack just prior to the release of the plectrum was
important.) The plectrum was assumed to be massless, so the force on the string was
F
plectrum

in equation (3). As noted above, the direction of F
plectrum

in the model was
perpendicular to the plectrum; this direction was calculated from equation (4), so
that F

x
and F

y
could be found (see Figure 13). Furthermore, the plectrum force was

assumed to be distributed along the string according to the width of the plectrum,
which in our experiments was &1)5 mm. In our speci"c calculation, the spatial step
size along x was typically Dx"0)5 mm, so we distributed the force F

plectrum
over

three of these spatial units. After each discrete time step of the simulation, the
distance along the plectrum from the jack to the string was calculated. When this
distance exceeded the length of the plectrum, contact with the string was lost, and
the string then vibrated freely.

Calculated results for the amplitude of the string vibration, y
string

, as a function of
v
j
are given in Figure 14. The model parameters used here, which are all given in the
"gure caption, were chosen to correspond to the experiment in Figure 10. It is seen
that the string amplitude is essentially independent of the jack velocity. The
explanation for this result seems straightforward; to a "rst approximation the
location of the jack at which the plectrum releases from the string varies little with
v
j
, so the amplitude of the pluck is also independent of v

j
. This simple picture is

con"rmed by examining other results of the model (such at the jack location at the
release point), but it is only a "rst approximation. The small but noticeable
variations of the string amplitude at small v

j
are similar to those found in the Gri!el

model, and have the same origin. However, here they lead to a much smaller peak
in y

string
, which is less than 10% in this case, and occurs at v

j
&0)3 m/s. At large



Figure 13. Schematic diagram of our model of the plucking process.
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v
j
there is a slight gradual decrease of the string amplitude with increasing v

j
. This

decrease appears to be due to &&inertial e!ects''. That is, the e!ective mass of the
string is too large to move instantaneously with the plectrum, giving a smaller
string displacement at the release point for large v

j
. In other words, if one attempted

to excite a heavy cable with the plectrum, the resulting amplitude would be very
small. With regards to the modelling, we should add that the basic results do not
depend strongly on the parameter values (such as the plectrum force constant, F

0
),

so long as they are within reason.
Similar results are found from the model for parameters appropriate for the

experiment in Figure 11. The model prediction for this case is shown in Figure 15.
The predicted variation of the string amplitude is very slight, and would not be
discernible in our measurements given the experimental uncertainties.

Our model does not do quite as well as for the case considered experimentally in
Figure 12. Here the measurements showed a signi"cant +30%, increase in the
string amplitude with increasing jack velocity. The model, Figure 16, shows
a somewhat smaller increase of about 10%. Interestingly, in both the experiment
and the model this increase occurs abruptly, and at similar values of v

j
(at 0)2 m/s in

the experiment, and 0)1 m/s in the model). Indeed, all of our calculations exhibit
such abrupt increases in the string amplitude, although the data are sometimes not
precise enough to con"rm such a variation. This behavior seems to be associated



Figure 14. Results calculated for our model, with string parameters chosen to match those of the
experiment in Figure 10; diameter of 0)5 mm, length of 59 cm; f"150 Hz. The spatial step size for the
string portion of the calculation was 0)5 mm, the time step was 2)8]10~6 s, and the string was plucked
10% from one end. The plectrum force constant was chosen to be F

0
"2]10~5N. This value was

chosen to yield maximum plectrum forces in accord with the measurements shown in Figure 9. With
this choice for F

0
, the string de#ection at the point of release was calculated to be &0)4 mm, which

agreed with direct observation in the experiments.
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with the constructive contributions of re#ections from the ends of the string. When
v
j

is su$ciently large, these re#ections can add constructively to the overall
amplitude, so long as the plectrum has lost contact with the string when the
re#ections return. When v

j
is small, the plectrum is still in contact with the string

when the re#ections return. The associated force on the plectrum then acts back on
the plectrum, and is included in our model, and then leads to the small oscillations
of the string amplitude seen at small v

j
, as mentioned above.

The most serious disagreement between the measurement and the model is at
high v

j
, where the model shows a signi"cant decrease in the string amplitude while

the measurement shows only a small decrease. It is not currently clear to us where
the problem lies. We have tried di!erent forms for the plectrum shape function, but
this has little e!ect on the behavior of the model. Other possible additions to the
model which we have not yet explored are: (1) including the mass of the plectrum,
and (2) including the e!ects of the frictional force between the plectrum and the
string. We also suspect that the plectrum force law may di!er from the simple
assumptions entailed by equations (3) and (4). In any event, aside from the
discrepancy at large v

j
, our model does a reasonable qualitative job, as it predicts

an abrupt increase in the string amplitude, at approximately the correct value of v
j
.



Figure 15. Results calculated for our model, with string parameters chosen to match those of the
experiment in Figure 11; 0)2 mm diameter, 53 cm length; f"300 Hz. The other model parameters (the
step sizes, F

0
, etc.) were the same as in Figure 14.

Figure 16. Results calculated for our model, with string parameters chosen to match those of the
experiment in Figure 12; 0)5 mm diameter, 2)00m length; f"35 Hz. The other model parameters (the
step sizes, F

0
, etc.) were the same as in Figure 14.
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4. SUMMARY

We have presented the results of an experimental study of the plucking of
a harpsichord string. For normal playing conditions, we "nd that the amplitude of
the string motion is approximately independent of the speed with which the key is
pressed. This result is in agreement with the conventional wisdom, and with
a simple model of the plucking process which we have investigated. The
experiments also reveal e!ects due to the vibrations of the plectrum and jack, and
to frictional rubbing of the plectrum against the string. The in#uence of these e!ects
on tone production has not yet been determined. However, it seems likely that they
are responsible for the di!erence in tone produced by di!erent types of plectra. This
is a problem that we will leave for the future.
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